Толковый словарь Ефремовой:
гироскоп м. см. жироскоп
Прибор, основной частью которого является вращающееся тело (диск), ось вращения которого может изменять свое положение в пространстве, но благодаря быстрому вращению сохраняет неизменное направление при любых изменениях положения подвеса.
Толковый словарь Ушакова:
ГИРОСКО́П и жироскоп, гироскопа, ·муж. (от ·греч. gyros — круглый и skopeo — смотрю) (спец.). Прибор в виде вращающегося на вертикально стоящей оси тела, служащий для поддерживания в состоянии равновесия каких-нибудь предметов. Волчок устроен по принципу гироскопа. Вагоны однорельсовой дороги сохраняют равновесие благодаря установленному в них гироскопу.
Большой энциклопедический словарь:
ГИРОСКОП (от гиро... и скоп) — твердое тело, быстро вращающееся вокруг имеющейся у него оси вращения. При этом ось вращения гироскопа должна иметь возможность свободно поворачиваться в пространстве, для чего гироскоп обычно закрепляют в т. н. кардановом подвесе (рис.). Основное свойство гироскопа с 3 степенями свободы состоит в том, что его ось устойчиво сохраняет приданное ей первоначальное направление (напр., на какую-нибудь звезду). Если же на такой гироскоп начинает действовать сила, то его ось отклоняется не в сторону действия силы, а в направлении, перпендикулярном к ней; в результате гироскоп начинает прецессировать (см. Прецессия). Свойство гироскопа широко используется в различных навигационных приборах — гирокомпасе, гировертикали и др., а также для стабилизации движения самолетов (автопилот) — ракет, морских судов, торпед и др.
Большая советская энциклопедия:
Гироскоп
(от Гиро... и ...скоп)
быстро вращающееся твёрдое тело, ось вращения которого может изменять своё направление в пространстве. Г. обладает рядом интересных свойств, наблюдаемых у вращающихся небесных тел, у артиллерийских снарядов, у детского волчка, у роторов турбин, установленных на судах, и др. На свойствах Г. основаны разнообразные устройства или приборы, широко применяемые в современной технике для автоматического управления движением самолётов, морских судов, ракет, торпед и др. объектов, для определения горизонта или географического меридиана, для измерения поступательных или угловых скоростей движущихся объектов (например, ракет) и многое др.
Свойства Г. проявляются при выполнении двух условий: 1) ось вращения Г. должна иметь возможность изменять своё направление в пространстве; 2) угловая скорость вращения Г. вокруг своей оси должна быть очень велика по сравнению с той угловой скоростью, которую будет иметь сама ось при изменении своего направления.
Простейшим Г. является детский волчок, быстро вращающийся вокруг своей оси ОА (рис. 1); ось ОА может изменять своё положение в пространстве, поскольку её конец А не закреплен. У Г., применяемых в технике, свободный поворот оси Г. можно обеспечить, закрепив сё в рамках (кольцах) 1, 2 т. н. карданова подвеса (рис. 2), позволяющего оси АВ занять любое положение в пространстве. Такой Г. имеет 3 степени свободы: он может совершать 3 независимых поворота вокруг осей АВ, DE и GK, пересекающихся в центре подвеса О, который остаётся по отношению к основанию 3 неподвижным. Если центр тяжести Г. совпадает с центром О, то Г. называется астатическим (уравновешенным), в противном случае — тяжёлым.
Первое свойство уравновешенного Г. с тремя степенями свободы состоит в том, что его ось стремится устойчиво сохранять в мировом пространстве приданное ей первоначальное направление. Если эта ось вначале направлена на какую-нибудь звезду, то при любых перемещениях основания прибора и случайных толчках она будет продолжать указывать на эту звезду, меняя свою ориентировку относительно земных осей. Впервые это свойство Г. использовал французский учёный Л. Фуко для экспериментального доказательства вращения Земли вокруг её оси (1852). Отсюда и само название «Г.», что в переводе означает «наблюдать вращение».
Второе свойство Г. обнаруживается, когда на его ось (или рамку) начинают действовать сила или пара сил, стремящиеся привести ось в движение (т. е. создающие вращающий момент относительно центра подвеса). Под действием силы Р (рис. 3) конец А оси АВ Г. будет отклонять не в сторону действия силы, как это было бы при невращающемся роторе, а в направлении, перпендикулярном к этой силе; в результате Г. вместе с рамкой 1 начнёт вращаться вокруг оси DE, притом не ускоренно, а с постоянной угловой скоростью. Это вращение называется прецессией; оно происходит тем медленнее, чем быстрее вращается вокруг своей оси АВ сам Г. Если в какой-то момент времени действие силы прекратится, то одновременно прекратится прецессия и ось АВ мгновенно остановится, т. е. прецессионное движение Г. безынерционно.
Величина угловой скорости прецессии определяется по формуле:
где М — момент силы Р центра О, = АОЕ, — угловая скорость собственного вращения Г. вокруг оси АВ, I — момент инерции Г. относительно той же оси, h = АО — расстояние от точки приложения силы до центра подвеса Г.; второе равенство имеет место, когда сила Р параллельна оси DE. Из формулы (1) непосредственно видно, что прецессия происходит тем медленнее, чем больше , точнее, чем больше величина H = I, называется собственным кинетическим моментом Г. Как найти направление прецессии Г. см. рис. 4.
Наряду с прецессией ось Г. при действии на неё силы может ещё совершать т. н. нутацию — небольшие, но быстрые (обычно незаметные на глаз) колебания оси около её среднего направления. Размахи этих колебаний у быстро вращающегося Г. очень малы и из-за неизбежного наличия сопротивлений быстро затухают. Это позволяет при решении большинства технических задач пренебречь нутацией и построить т. н. элементарную теорию Г., учитывающую только прецессию, скорость которой определяется формулой (1). Прецессионное движение можно наблюдать у детского волчка (рис. 5, а), для которого роль центра подвеса играет точка опоры О. Если ось такого волчка поставить под углом АОЕ к вертикали и отпустить, то она под действием силы тяжести Р будет отклоняться не в сторону действия этой силы, т. е. не вниз, а в перпендикулярном направлении, и начинает прецессировать вокруг вертикали. Прецессия волчка также сопровождается незаметными на глаз нутационными колебаниями, быстро затухающими из-за сопротивления воздуха. Под действием трения о воздух собственное вращение волчка постепенно замедляется, а скорость прецессии соответственно возрастает. Когда угловая скорость вращения волчка становится меньше определенной величины, он теряет устойчивость и падает. У медленно вращающегося волчка нутационные колебания могут быть довольно заметными и, слагаясь с прецессией, существенно изменить картину движения оси волчка: конец А оси будет описывать ясно видимую волнообразную или петлеобразную кривую, то отклоняясь от вертикали, то приближаясь к ней (рис. 5, б).
Другой пример прецессионного движения даёт артиллерийский снаряд (или пуля). На снаряд при его движении, кроме силы тяжести, действуют силы сопротивления воздуха, равнодействующая R которых направлена примерно противоположно скорости центра тяжести снаряда и приложена выше центра тяжести (рис. 6, а). Невращающийся снаряд под действием силы сопротивления воздуха будет «кувыркаться» и его полёт станет беспорядочным (рис. 6, б); при этом значительно возрастет сопротивление движению, уменьшится дальность полёта и снаряд не попадёт в цель головной частью. Вращающийся же снаряд обладает всеми свойствами Г., и сила сопротивления воздуха вызывает отклонение его оси не в сторону действия этой силы, а в перпендикулярном направлении. В результате ось снаряда медленно прецессирует вокруг прямой, по которой направлена скорость vc, т. е. вокруг касательной к траектории центра тяжести снаряда (рис. 6, в), что делает полёт правильным и обеспечивает на нисходящей ветви траектории попадание снаряда в цель головной частью.
Наша планета Земля также является гигантским Г., совершающим прецессию (подробнее см. Прецессия в астрономии).
Если ось АВ ротора Г. закрепить в одной рамке, которая может вращаться по отношению к основанию прибора вокруг оси DE (рис. 7), то Г. будет иметь возможность участвовать только в двух вращениях — вокруг осей АВ и DE, т. е. будет иметь две степени свободы. Такой Г. не обладает ни одним из свойств Г. с тремя степенями свободы, однако у него есть другое очень интересное свойство: если основанию Г. сообщить вынужденное вращение с угловой скоростью вокруг оси KL, образующей угол с осью АВ, то на ось ротора со стороны подшипников А и В начнёт действовать пара сил с гироскопическим моментом
Мгир = I sin . (2)
Эта пара стремится кратчайшим путём установить ось ротора Г. параллельно оси KL, причём так, чтобы и вращение ротора, и вынужденное вращение были видны происходящими в одну и ту же сторону.
Рассмотрим, наконец, ротор, ось АВ которого непосредственно закреплена в основании D (рис. 8). Если это основание неподвижно, то ось не может изменять своё направление в пространстве и, следовательно, ротор никакими свойствами Г. не обладает. Однако если вращать основание вокруг некоторой оси KL с угловой скоростью , то по предыдущему правилу ось АВ будет стремиться установиться параллельно оси KL. Этому движению препятствуют подшипники, в которых закреплена ось. В результате ротор будет давить на подшипники А и В с силами F1 и F2, называемыми гироскопическими силами.
На морских судах и винтовых самолётах имеется много вращающихся частей: вал двигателя, ротор турбины или динамомашины, гребные или воздушные винты и т.п. При разворотах самолёта или судна, а также при качке на подшипники, в которых укреплены эти вращающиеся части, действуют указанные гироскопические силы и их необходимо учитывать при соответствующих инженерных расчётах; величины этих сил могут достигать нескольких тонн, и, если крепления подшипников не будут должным образом рассчитаны, то произойдёт авария.
Теория Г. является важнейшим разделом динамики (См. Динамика) твёрдого тела, имеющего неподвижную точку. Перечисленные свойства Г. представляют собой следствия законов, которым подчиняется движение такого тела. Первое из свойств Г. с тремя степенями свободы есть проявление закона сохранения кинетического момента, а второе свойство — проявление одной из теорем динамики, согласно которой изменение во времени кинетического момента тела равно моменту действующей на него силы.
Гироскопы в технике. Применяемые в технике Г. выполняют обычно в виде маховичка с утолщённым ободом, весом от нескольких Г до десятков кГ, закрепленного в кардановом подвесе. Чтобы сообщить Г. быстрое вращение, его делают ротором быстроходного электромотора постоянного или переменного тока. В авиации применяются Г. с ротором в виде воздушной турбинки, приводимой в движение струей воздуха. Иногда Г. выполняют в форме шара (шар-Г.) с подвесом на воздушной плёнке, образуемой подачей сжатого воздуха. В ряде конструкций применяют поплавковый Г., ротор которого заключён в кожух, плавающий в жидкости; этим разгружаются подшипники кожуха и значительно уменьшается момент трения в них.
Устройство конкретных гироскопических приборов основывается на тех или иных свойствах Г. с тремя или двумя степенями свободы. Свойство Г. с тремя степенями свободы неизменно сохранять направление своей оси в пространстве используется при конструировании приборов для автоматического управления движением самолётов (например, Автопилота), ракет, морских судов, торпед и т.п. Г. в этих приборах играет роль чувствительного элемента, регистрирующего отклонение движущегося объекта от заданного курса. Одновременно прибор содержит следящую систему, улавливающую сигнал об отклонении, усиливающую его и передающую силовому устройству (мотору), которое и возвращает объект на заданный курс, обычно с помощью рулей. Второе свойство Г. с тремя степенями свободы — свойство прецессировать под действием приложенной силы — положено в основу Г. направления (курсового Г.) и важных навигационных приборов: Гирокомпаса — прибора, определяющего направление географического меридиана, и гировертикали (или гирогоризонта) — прибора, определяющего направление истинной вертикали (горизонта).
При запуске ракеты необходимо с высокой степенью точности знать скорость её вертикального взлёта. С этой, казалось бы, очень трудной задачей, тоже легко справляется прецессирующий Г.
В гироскопических приборах часто используют и свойства Г. с двумя степенями свободы. К таким приборам относятся авиационный Указатель поворота, а также некоторые виды Гиростабилизаторов, в частности устройства для пространственной стабилизации объекта (например, искусственного спутника Земли). Подробнее о всех этих и др. устройствах см. Гироскопические устройства.
Современная техника требует от многих гироскопических приборов очень высокой точности, что вызывает большие технологические трудности при их изготовлении. Например, у некоторых приборов при весе ротора порядка 1 кГ для обеспечения нужной точности смещение центра тяжести от центра подвеса не должно превышать долей микрона, иначе момент силы тяжести вызовет нежелательную прецессию (уход) оси Г. Кроме того, на точность показаний приборов с Г. в кардановом подвесе влияет трение в осях. Всё это привело к разработке Г., основанных не на чисто механических, а на других физических принципах (см. также Квантовый гироскоп, Вибрационный гироскоп).
Лит.: Николаи Е. Л., Гироскоп и некоторые его технические применения, М. — Л., 1947 (популярное изложение); Граммель Р., Гироскоп, его теория и применения, пер. с нем., т. 1—2, М., 1952; Булгаков Б. В., Прикладная теория гироскопов, 2 изд., М., 1955; Ишлинский А. Ю., Механика гироскопических систем, М., 1963.
С. М. Тарг.
Рис. 1. Волчок; ОА — его ось, Р — сила тяжести.
Рис. 2. Гироскоп в кардановом подвесе. Ротор С, кроме вращения вокруг своей оси АВ, может вместе с рамкой 1 поворачиваться вокруг оси DE и вместе с рамкой 2 — вокруг оси GK; следовательно, ось ротора может занять любое положение в пространстве. О — центр подвеса, совпадающий с центром тяжести гироскопа.
Рис. 3. Действие силы Р на гироскоп с вращающимся ротором; ось АВ движется перпендикулярно направлению Р.
Рис. 4. Правило определения направления прецессии: глядя на ротор из точки приложения силы Р, надо установить, как вращается ротор — по ходу или против хода часовой стрелки. После этого мысленно повернуть вектор АР вокруг оси АВ на 90° в ту же сторону (т. е. по ходу или против хода часовой стрелки соответственно); тогда он и укажет направление прецессии (здесь — AD).
Рис. 5. а — прецессия волчка под действием силы тяжести; б — движение оси волчка при медленном собственном вращении.
Рис. 6. а — прецессия артиллерийского снаряда; б и в — схемы движения снарядов и их траектории соответственно; б — для невращающегося снаряда; в — для вращающегося.
Рис. 7. Гироскоп с двумя степенями свободы.
Рис. 8. Действие гироскопических сил на подшипники, закрепляющие ось, при повороте основания прибора вокруг оси KL.
Большой словарь иностранных слов:
И жироскоп (устар.), гироскопа, м. [от греч. gyros – круг и skopeo – смотрю] (спец.). Прибор в виде вращающегося на вертикально стоящей оси тела, служащий для поддерживания в состоянии равновесия каких-н. предметов. Волчок устроен по принципу гироскопа. Вагоны однорельсовой дороги сохраняют равновесие благодаря установленному в них гироскопу.
Толковый словарь Кузнецова:
гироскоп
ГИРОСКОП -а; м. [от греч. gyros — круг, кольцо и skope — смотрю, наблюдаю]. Свободно подвешенное, быстро вращающееся тело (волчок), ось вращения которого может изменять своё положение в пространстве, но благодаря быстрому вращению сохраняет неизменное направление при любых изменениях положения подвеса. Г. ориентации. Курсовый, квантовый г.
Гироскопический, -ая, -ое. Г-ие приборы. Г. компас (=гирокомпас).
Орфографический словарь Лопатина:
орф.
гироскоп, -а
Толковый словарь Ожегова:
ГИРОСКОП, а, м. Используемый для автоматического регулирования устойчивости прибор с диском и свободной осью, всегда сохраняющей неизменное положение.
| прил. гироскопический, ая, ое и гироскопный, ая, ое.
Физический энциклопедический словарь:
(от греч. gyros — круг, gyreuo — кружусь, вращаюсь и skopeo — смотрю, наблюдаю), быстро вращающееся симметричное тв. тело, ось вращения к-рого (ось симметрии) может изменять своё направление в пр-ве. Г. обладает рядом интересных св-в, наблюдаемых у вращающихся небесных тел, артиллерийских снарядов, детского волчка, роторов турбин, установленных на судах, и др. На св-вах Г. основаны разнообразные устройства или приборы, широко применяемые в совр. технике. .
Рис. 1. Волчок: АО — его ось; Р — сила тяжести.
Св-ва Г. проявляются при выполнении двух условий:
1) ось вращения Г. должна иметь возможность изменять своё направление в пр-ве;
2) угл. скорость вращения Г. вокруг своей оси должна быть очень велика по сравнению с той угл. скоростью, к-рую будет иметь сама ось при изменении своего направления.
Простейшим Г. явл. детский волчок, быстро вращающийся вокруг своей оси ОА (рис. 1), к-рая может изменять своё положение в пр-ве, поскольку её конец А не закреплён. У Г., применяемых в технике, свободный поворот оси Г. обеспечивают, закрепляя Г. в рамках (кольцах) 1, 2 карданова подвеса (рис. 2), позволяющего оси А В занять любое положение в пр-ве. Такой Г. имеет три степени свободы: он может совершать три независимых поворота вокруг осей АВ, DE и GK, .
Рис. 2. Гироскоп в кардановом подвесе. Ротор С, кроме вращения вокруг своей оси АВ, может вместе с рамкой 1 поворачиваться вокруг оси DE u вместе с рамкой 2 — вокруг оси GK; О — центр подвеса, совпадающий с центром тяжести гироскопа.
пересекающихся в центре подвеса О, к-рый остаётся по отношению к основанию неподвижным. Если центр тяжести С Г. совпадает с центром О, то Г. наз. астатическим (уравновешенным), в противном случае — т я ж ё л ы м.
Первое свойство уравновешенного Г. с тремя степенями свободы состоит в том, что его ось стремится устойчиво сохранять в мировом пр-ве приданное ей первоначальное направление. Если эта ось вначале направлена на к.-н. звезду, то при любых перемещениях прибора и случайных толчках она будет продолжать указывать на эту звезду, меняя свою ориентировку относительно осей, связанных с Землёй. .
Рис. 3. Действие силы Р на гироскоп с вращающимся ротором; ось АВ движется перпендикулярно направлению силы Р.
Второе свойство Г. обнаруживается, когда на его ось (или рамку) начинает действовать сила (или пара сил), стремящаяся привести ось в движение (т. е. создающая вращающий момент относительно центра подвеса). Под действием силы Р, приложенной к концу А оси АВ (рис. 3), Г. будет отклоняться не в сторону действия силы, как это было бы при невращающемся роторе, а в направлении, перпендикулярном к этой силе; в результате Г. вместе с рамкой начнёт вращаться вокруг оси DE, притом не ускоренно, а с пост. угл. скоростью. Это вращение наз. прецессией; оно происходит тем медленнее, чем быстрее вращается вокруг своей оси АВ сам Г. Если в какой-то момент времени действие силы прекратится, то одновременно прекратится прецессия, и ось АВ остановится.
Величина угл. скорости прецессии определяется по ф-ле: .
где М — момент силы Р относительно центра О, a=LАОЕ, W — угл. скорость собств. вращения Г. вокруг оси .
Рис. 4. Правило определения направления прецессии: глядя на ротор из точки приложения силы Р, устанавливаем по ходу или против хода часовой стрелки вращается ротор; повернув силу Р вокруг оси АВ на 90° в ту же сторону, получим направление прецессии.
АВ, I — момент инерции Г. относительно той же оси, h=AO — расстояние от точки приложения силы до центра подвеса Г.; второе равенство имеет место, когда сила Р параллельна оси DE (в частности, для тяжёлого Г.). Из ф-лы (*) непосредственно видно, что прецессия происходит тем медленнее, чем больше W, точнее, чем больше величина H=IW, наз. собственным кинетич. моментом Г. Как определяется направление прецессии Г., показано на рис. 4.
Наряду с прецессией ось Г. при действии на неё силы может ещё совершать т. н. нутацию — небольшие, но быстрые (обычно незаметные на глаз) колебания оси около её ср. направления. Размахи этих колебаний у быстро вращающегося Г. очень малы и из-за неизбежного наличия сопротивлений быстро затухают. Это позволяет при решении большинства техн. задач пренебречь нутацией и построить т. н. элем. теорию Г., учитывающую только прецессию, скорость к-рой определяется ф-лой (*). Прецессионное движение можно наблюдать у детского волчка (рис. 5, а), для к-рого роль центра подвеса играет точка опоры О. Если ось такого волчка поставить под углом АОЕ к вертикали и отпустить, то она под действием силы тяжести Р будет отклоняться. не в сторону действия этой силы, т. е. не вниз, а в перпендикулярном к ней направлении и прецессировать вокруг вертикали. Прецессия волчка также сопровождается незаметными на глаз нутац. колебаниями, быстро затухающими из-за сопротивления воздуха. .
Рис. 5. а — прецессия волчка под действием силы тяжести; б — движение оси волчка при медленном собств. вращении.
Под действием трения о воздух собственное вращение волчка постепенно замедляется, а скорость прецессии со соотв. возрастает. Когда угл. скорость вращения волчка становится меньше определ. величины, он теряет устойчивость и падает. У медленно вращающегося волчка нутац. колебания могут быть довольно заметными и, слагаясь с прецессией, существенно изменить картину движения оси волчка: конец А оси будет описывать ясно видимую волнообразную или петлеобразную кривую, то отклоняясь от вертикали, то приближаясь к ней (рис. 5, б).
Другой пример прецессионного движения даёт артиллерийский снаряд (или пуля). На снаряд при его движении, кроме силы тяжести, действует сила сопротивления (R) воздуха, направленная примерно противоположно скорости центра тяжести снаряда и приложенная выше центра тяжести (рис. 6, а). Невращающийся снаряд под действием этой силы будет кувыркаться, и его полёт станет беспорядочным (рис. 6, б); при этом значительно возрастёт сопротивление движению, уменьшится дальность полёта. Вращающийся же снаряд обладает всеми св-вами Г., и сила сопротивления воздуха вызывает его прецессию вокруг прямой, по к-рой направлена скорость vc (рис. 6, а), т. е. вокруг касательной к траектории центра тяжести снаряда (рис. 6, в); это делает полёт правильным и обеспечивает на нисходящей ветви траектории попадание снаряда в цель головной частью. .
Рис. 6. а — прецессия артиллерийского снаряда; б и в — схемы движения снарядов и их траектории: для невращающегося снаряда (б) и для вращающегося (в).
Наша планета также явл. гигантским Г., совершающим как прецессию, так и нутацию.
Если ось АВ ротора Г. закрепить в одной рамке, к-рая может вращаться по отношению к основанию прибора вокруг оси DE (рис. 7), то Г. будет иметь возможность участвовать только в двух вращениях — вокруг осей А В и DE, т. е. будет иметь две степени свободы. Такой Г. не обладает ни одним из св-в Г. с тремя степенями свободы, однако у него есть другое .
Рис. 7. Гироскоп с двумя степенями свободы.
св-во: если основанию Г. сообщить вынужденное вращение с угл. скоростью со вокруг оси KL, образующей угол а с осью АВ, то со стороны ротора на подшипники А и В начнёт действовать пара сил с моментом Mгир = /IWwsina. Эта пара сил стремится кратчайшим путём установить ось ротора Г. параллельно оси KL, причём так, чтобы и вращение ротора, и вынужденное вращение были видны происходящими в одну и ту же сторону.
Если ось АВ ротора закреплена в основании D (рис. 8) и это основание неподвижно, то ось не может изменять своё направление в пр-ве, и, следовательно, ротор никакими св-вами Г. не обладает. Однако если вращать основание вокруг нек-рой оси KL с угл. скоростью w, то по предыду щему правилу ось ротора будет давить на подшипники А и В с силами F1 и F2, наз. гироскопическими силами. .
Рис. 8. Действие гироскопич. сил на подшипники, закрепляющие ось, при повороте основания прибора вокруг оси KL.
На морских судах и винтовых самолётах имеется много вращающихся частей: вал двигателя, ротор турбины или динамомашины, гребные или возд. винты и т. п. При разворотах самолёта или судна, а также при качке на подшипники, в которых укреплены эти вращающиеся части, действуют указанные гироскопические силы, и их необходимо учитывать при соответствующих инженерных расчётах.
Теория Г. явл. важнейшим разделом динамики тв. тела, имеющего неподвижную точку. Перечисленные св-ва Г. представляют собой следствия законов, к-рым подчиняется движение такого тела. Первое из св-в Г. с тремя степенями свободы — проявление закона сохранения кинетич. момента, а второе св-во — проявление одной из теорем динамики, согласно к-рой происходящее с течением времени изменение кинетического момента тела равно моменту действующей на него силы.
Гироскопы в технике. Применяемые в технике Г. выполняют обычно в виде маховичка с утолщённым ободом, имеющего массу от неск. г до десятков кг и закреплённого в кардановом подвесе. Чтобы сообщить Г. быстрое вращение, его часто делают ротором быстроходного электромотора пост. или перем. тока. В авиации применяются Г. с ротором в виде возд. турбинки, приводимой в движение струёй воздуха. Иногда Г. выполняют в форме шара (шар-Г.) с подвесом на возд. плёнке, образуемой потоком сжатого воздуха; воздушные (газовые) опоры могут также применяться в осях подвеса ротора и кардановых колец. В ряде устройств используют поплавковый Г., ротор к-рого заключён в кожух, плавающий в жидкости; этим разгружаются подшипники кожуха и значительно уменьшается момент сил трения в них. Кроме того, Г. с жидкостными или поплавковыми подвесами мало подвержены случайным вибрационным, ударным и др. воздействиям, что повышает их точность. Используются также Г. с магнитными и электростатическими подвесами.
В технике применяется много различных гироскопических устройств, или приборов, основанных на использовании тех или иных св-в Г. с тремя или двумя степенями свободы. В них в кач-ве осн. элементов входят один или неск. Г., а также нек-рые вспомогат. приспособления для корректирования направления оси Г. или измерения углов её отклонения и т. д. Эти устройства применяют в авиации, морском флоте, ракетной и косм. технике и народном хозяйстве для решения разнообразных навигац. задач, для управления подвижными объектами, их стабилизации, а также при проведении нек-рых спец. работ (маркшейдерских, топографич., геодезич. и др.).
Важнейшими навигац. устройствами явл. гирокомпас и гировертикаль (гирогоризонт). Гирокомпас, указывающий направление истинного (геогр.) меридиана, предназначается для определения курса движущегося объекта, а также азимута ориентируемого направления; его важные преимущества перед магн. компасом состоят в том, что он указывает истинный, а не магнитный меридиан, и что на его показания не влияют перемещающиеся металлич. массы и эл.-магн. поля. Гировертикаль определяет направление истинной вертикали или плоскости горизонта, а также отклонения движущегося объекта от этой плоскости (углы бортовой и килевой качки корабля, углы тангажа и крена летат. аппарата). К навигац. устройствам также относятся: Г. направления, определяющие углы отклонения в горизонт. плоскости объекта от заданного направления (углы рыскания летат. аппарата или корабля), в частности авиац. указатель поворота; гиромагн. компасы, определяющие магн. курс объекта; гирошироты, к-рые служат для определения широты места; инерциальные навигац. системы, предназначенные для определения целого ряда параметров, необходимых для навигации данного объекта без использования внеш. сигналов; гироорбитанты, определяющие углы рыскания ИСЗ; автопилоты и гирорулевые, обеспечивающие автоматическое управление соотв. полётом летательного аппарата или курсом корабля, и др.
Большое число устройств, наз. гиростабилизаторами, служит для стабилизации объекта или отд. приборов и устройств, а также для определения угл. отклонений объекта. Они применяются для автоматич. управления движением самолётов, судов, торпед, ракет, для уменьшения качки судов и для др. целей. Различают системы индикаторной и силовой стабилизации. Индикаторная система содержит в кач-ве индикатора Г., регистрирующий отклонение объекта от заданного курса, и следящую силовую систему, к-рая улавливает сигнал об отклонении, усиливает его и передаёт силовому устройству (мотору), возвращающему объект на заданный курс, обычно с помощью рулей. В силовой системе стабилизация непосредственно осуществляется массивным Г.
Ряд гироскопич. устройств, в к-рых используются т. н. дифференцирующие и интегрирующие Г., служит для определения угл. скоростей объекта (гиротахометры) или его угл. ускорений (гироакселерометры) и углов поворота, а также линейных скоростей объекта. К последним относится гироскопич. интегратор ускорений, позволяющий определить в любой момент времени скорость ракеты при её ускоренном движении на нач. участке траектории.
Совр. техника требует от мн. гироскопич. устройств очень высокой точности, что вызывает большие технол. трудности при их изготовлении. Напр., у нек-рых приборов при массе ротора порядка 1 кг для обеспечения нужной точности смещения центра тяжести от центра подвеса не должны превышать долей микрона, иначе момент силы тяжести вызовет нежелат. прецессию (уход) оси Г. Кроме того, на точность показаний приборов с Г. в кардановом подвесе влияет трение в осях. Всё это привело к разработке Г., основанных на др. физ. принципах. Напр., для определения угл. скорости объекта может применяться вибрац. Г., содержащий в кач-ве чувствит. элемента не вращающийся ротор, а вибрирующие детали, или лазерный, Г., в к-ром используется квант. генератор.
Техника. Современная энциклопедия:
гироскоп
Быстровращающееся симметричное твёрдое тело (ротор), ось вращения (ось симметрии) которого может изменять своё направление в пространстве. Ротор устанавливают в рамках (кольцах) карданова подвеса (см. рис.), позволяющего оси ротора занимать любое положение в пространстве. Такой гироскоп имеет три степени свободы: он может совершать независимые повороты вокруг осей АВ, DЕ и GK, пересекающихся в центре подвеса О. Если центр тяжести гироскопа совпадает с центром О, то гироскоп называется уравновешенным. Такой гироскоп обладает двумя основными свойствами. Первое свойство гироскопа состоит в том, что его ось стремится устойчиво сохранять в пространстве приданное ей первоначальное направление. Если, напр., эта ось вначале направлена на какую-либо звезду, то при любых перемещениях основания прибора и случайных толчках она будет продолжать указывать на эту звезду, меняя свою ориентацию относительно земных осей. Впервые это свойство гироскопа использовал французский физик Ж. Фуко для экспериментального доказательства вращения Земли вокруг её оси (1852).
Гироскоп в кардановом подвесе
Второе свойство гироскопа: если на ось (или рамку) гироскопа начинает действовать сила, стремящаяся привести ось во вращение, то возникает прецессия (движение) гироскопа с постоянной угловой скоростью в направлении, перпендикулярном этой силе. В момент прекращения действия силы мгновенно прекращается прецессия гироскопа.
На основе гироскопа создаются приборы для автоматического управления движением самолётов, ракет, морских судов и т. д., прибор, определяющий направление географического меридиана (гирокомпас), прибор для определения направления истинной вертикали (гировертикаль) и др.
© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2025