Определение слова «астрофизика»

Толковый словарь Ефремовой:

астрофизика ж.
Научная дисциплина, изучающая физическую природу и эволюцию небесных тел и физических явлений во Вселенной.

Толковый словарь Ушакова:

АСТРОФИ́ЗИКА, астрофизики, мн. нет, ·жен. (от ·греч. astron — звезда и слова физика) (астр.). Отдел астрономии, изучающий физические и химические свойства небесных тел.

Большой энциклопедический словарь:

АСТРОФИЗИКА — раздел астрономии, изучающий физическое состояние и химический состав небесных тел и их систем, межзвездной и межгалактической сред, а также происходящие в них процессы. Основные разделы астрофизики: физика планет и их спутников, физика Солнца, физика звездных атмосфер, межзвездной среды, теория внутреннего строения звезд и их эволюции. Проблемы строения сверхплотных объектов и связанных с ними процессов (захват вещества из окружающей среды, аккреционные диски и др.) и задачи космологии рассматривает релятивистская астрофизика.

Большой словарь иностранных слов:

Астрофизики, мн. нет, ж. [от греч. astron – звезда и слова физика] (астр.). Отдел астрономии, изучающий физические и химические свойства небесных тел.

Толковый словарь Кузнецова:

астрофизика
АСТРОФИЗИКА -и; ж. Раздел астрономии, изучающий физическую природу и эволюцию небесных тел и атмосферы Вселенной, а также физических явлений и процессов, характерных для неё.
Астрофизический, -ая, -ое. А-ая обсерватория.

Малый академический словарь:

астрофизика
-и, ж.
Раздел астрономии, изучающий физическое состояние и химический состав небесных тел.

Орфографический словарь Лопатина:

орф.
астрофизика, -и

Физический энциклопедический словарь:

Раздел астрономии, изучающий физ. св-ва небесных тел и протекающие в них и в косм. пр-ве процессы. Широкое использование в астрономии открытых в земных условиях физ. законов и методов исследования началось со спектрального анализа. Этот метод оказался настолько эфф., что стал одним из важнейших методов астрономии. Спектр. анализ излучения удалённых косм. объектов дал возможность определить их плотность, темп-ру, хим. состав, хар-р и скорости внутр. движений и даже присутствие в них электрич. и магн.полей.
Несмотря на эти огромные достижения, классич. А., основанная на спектр. анализе оптич. излучения, была существенно ограничена. Излучение в оптич. диапазоне составляет лишь очень малую часть достигающего Земли спектра эл.-магн. излучения. Более того, области, в к-рых формируется оптич. излучение, обладают, как правило, большой плотностью, и в них быстро устанавливается термодинамич. равновесие. Поэтому в результате спектр. исследований в оптич. диапазоне сформировалась картина мира, в к-рой главенствовали гравитац. силы и равновесные тепловые процессы, а гл. задачей представлялось определение механич. и термодинамич. параметров тех или иных объектов. Так продолжалось почти до сер. 20 в., когда первый серьёзный удар по этим представлениям нанесла начавшая интенсивно развиваться радиоастрономия. Правда, ещё задолго до этого выяснилось, что источником энергии звёзд явл. термоядерные реакции, а представление о термояд. синтезе возникло именно в А. На существование неравновесных процессов во Вселенной указывали также космические лучи — ч-цы очень высокой энергии (распределение ч-ц косм. лучей по энергиям резко отличается от равновесного, см. Больцмана распределение).
Радиоастр. наблюдения выявили в Галактике косм. радиоисточники, в к-рых эфф. темп-pa достигает столь высоких значений (=1015 К), что считать это излучение излучением находящегося в тепловом равновесии газа нельзя. Исследования спектров радиоизлучения таких источников действительно установили их нетепловую природу. В частности, были обнаружены косм. мазеры — источники мощного когерентного радиоизлучения в отд. линиях молекул межзвёздного газа (см. МАЗЕР). Т. о., во Вселенной были обнаружены интенсивные нетепловые процессы, связанные с ускорением эл-нов до очень высоких, ультрарелятив. энергий. Синхротронное излучение таких эл-нов преим. наблюдается в радиодиапазоне. Процесс ускорения ч-ц связан, по-видимому, со взрывами звёзд — появлением т. н. сверхновых звёзд, которые рассматриваются как осн. источник косм. лучей в Галактике. Сходные процессы протекают также в массивных ядрах галактик. В этой связи важное значение в А. приобрели исследования эволюции и равновесия больших газовых масс, а также звёзд с учётом закономерностей физики элем. ч-ц и яд. физики. В частности, очень важной оказалась роль нейтрино в переносе энергии в звёздах и соотв. в динамике звёздных взрывов и гравитационных коллапсов. Стало необходимым учитывать эффекты общей теории относительности (особенно для нейтронных звёзд и чёрных дыр), а также эффекты квант. теории поля, ведущие к рождению ч-ц в очень сильных гравитац. полях (к «испарению» чёрных дыр).
Исключительно интересным астрофнз. объектом оказались пульсары — открытые в 1967 источники импульсного радиоизлучения. С обнаружением пульсаров — звёзд с плотностью в-ва, близкой к ядерной (=1014 г/см3), нейтронные звёзды перестали быть объектом лишь теор. исследований. Высокая стабильность периода между импульсами у пульсаров позволила исследовать эффект запаздывания прихода радиоимпульсов на разных частотах и установить плотность и темп-ру межзвёздного электронного газа, а также общую зависимость показателя преломления межзвёздной среды от частоты.
Важнейшая роль нейтронных звёзд выявилась также при исследовании природы косм. рентг. излучения. Были открыты импульсные источники рентг. излучения — рентг. б а р с т е р ы, к-рые, согласно совр. представлениям, обусловлены аккрецией в-ва на нейтронную звезду в тесной двойной системе.
В результате исследования косм. синхротронного излучения, поляризации света звёзд, структуры межзвёздных туманностей, св-в косм. лучей выяснилось, что Галактика пронизана магн. полями достаточной силы, чтобы существенно влиять на динамику межзвёздного газа, формирование звёзд и распространение косм. лучей. Более того, ускорение заряж. ч-ц, дающих нетепловое излучение, тесно связано с изменяющимися во времени полями.
Поведение косм. плазмы в магн. полях звёзд и межзвёздной среды стало предметом изучения быстро развивающейся с сер. 20 в. косм. электродинамики. Для Солнца эл.-магн. процессы в плазме не только определяют структуру короны, форму протуберанцев, цикличность его активности, но и самые мощные нестационарные процессы в Солн. системе — вспышки на Солнце. Эти вспышки явл. пока единственным доступным для прямого изучения процессом генерации косм. лучей во Вселенной (см. КОСМИЧЕСКИЕ ЛУЧИ). Весьма вероятно, что этот процесс эл.-магн. взрыва явл. лишь миниатюрной моделью мощных взрывных процессов во Вселенной, сопровождающихся генерацией ч-ц и излучений с неравновесным распределением по энергиям.
Вывод совр. А. об огромной роли во Вселенной неравновесных нетепловых процессов с участием ускоренных ч-ц подтверждается данными быстро развивающихся рентг. астрономии и гамма-астрономии.
Наконец, в совр. А. релятив. теория тяготения используется не только для интерпретации объектов типа чёрных дыр и нейтронных звёзд, но и для описания эволюции Вселенной в целом. Тем самым космология получила надёжную основу в виде строгих физ. законов. Важно подчеркнуть также, что именно благодаря А. намного расширились границы применимости открытых на Земле физ. законов, а сама физика получила новый импульс в связи с созданием новых методов исследования, таких, как детектирование косм. (в т. ч. солнечных) нейтрино, радиолокация Луны, Солнца и планет, вынос приборов за пределы земной атмосферы и магнитосферы и посылка косм. аппаратов к др. планетам.
Т. о., родилась новая А., к-рая, помимо классич. гравитац. сил и процессов равновесного излучения, учитывает важную роль эл.-магн., яд. и слабых вз-ствий, использует практически все известные механизмы излучения эл.-магн. волн и элем. ч-ц, релятив. динамику и релятнв. теорию тяготения, т. е. весь арсенал имеющихся физ. знаний, включая физ. теории поведения в-ва в экстремальных состояниях. Поэтому совр. А. включает такие разделы, как А. высоких энергий и косм. лучей, яд. и нейтринную А., релятив. и квантовую релятив. А.

Научно-технический словарь:

АСТРОФИЗИКА, отрасль АСТРОНОМИИ, которая изучает физические и химические свойства небесных тел и их происхождение. Для предсказания свойств звезд, планет и других небесных тел применяют данные из многих отраслей физики, в том числе ядерной, физики плазмы, теории относительности, спектроскопии. Астрофизики занимаются также интерпретацией информации, получаемой при астрономических наблюдениях — об электромагнитном спектре световых волн, рентгеновских лучей, радиоволн.

Грамматический словарь Зализняка:

астрофизика, астрофизики, астрофизики, астрофизик, астрофизике, астрофизикам, астрофизику, астрофизики, астрофизикой, астрофизикою, астрофизиками, астрофизике, астрофизиках

Энциклопедический словарь Брокгауза и Ефрона:

I
(от греч. слов — светило и — природа)учение о строении небесных тел. А. есть таким образом часть астрономии, занимающаяся изучением физических свойств и химического состава Солнца, планет, комет или неподвижных звезд и туманностей. Главные методы А.: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую правильнее было бы назвать астрохимией, химией небесных светил, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых светил. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии (см. эти сл.). А. не следует смешивать с физическою астрономией, каковым именем принято означать теорию движения небесных светил, т. е. то, что также носит название небесной механики. К А. относят также исследование строения поверхности небесных светил, специально Солнца и планет, насколько это возможно из телескопических наблюдений над этими телами. А. есть еще совершенно юная наука. Самое название ее существует только с 1865 и предложено Цельнером. Астрофизические обсерватории существуют еще только в очень немногих странах. Из них особенно знамениты Потсдамская обсерватория под управлением Фогеля и Медонская под управлением Жансена. В Пулкове также устроено астрофизическое отделение, во главе которого стоит Гассельберг. В настоящей статье мы изложим историю и главные результаты астроспектроскопии, или того отдела А., который состоит из приложения спектрального анализа к изучению небесных тел.
Первые исследования спектра Солнца были предприняты одним из изобретателей спектрального анализа, Кирхгофом, в 1859 г. Результатом этих исследований был рисунок солнечного спектра, из которого можно было определить уже с большою подробностью химический состав солнечной атмосферы. Раньше Кирхгофа высказывались только иногда отдельные предположения о возможности анализа солнечной атмосферы посредством спектроскопа и в особенности о существовании на Солнце натрия вследствие найденной в спектре его темной линии D натрия. Такие предположения высказывались, напр., Фуко в Париже, Стоксом в Кембридже. Между тем еще незадолго до этого Огюст Конт высказал в своей "Положительной философии" убеждение в невозможности когда бы то ни было узнать химический состав небесных тел, хотя уже в 1815 г. Фраунгофер знал о существовании темных линий в спектре Солнца и о существовании характеристических спектров у некоторых отдельных звезд Сириуса, Капеллы, Бетейгейзы, Проциона, Поллукса. После первых исследований Кирхгофа спектральным анализом небесных тел занялись с большим усердием несколько астрофизиков, которые вскоре представили чрезвычайно обстоятельные исследования спектров Солнца и неподвижных звезд. Ангстром (вернее, Онгстром) изготовил чрезвычайно точный атлас солнечного спектра, Секки произвел обозрение большого числа звезд посредством спектроскопа и установил четыре типа звездных спектров, Геггинс начал ряд исследований над спектрами отдельных ярких звезд. Область применения спектроскопа постепенно расширялась. Геггинсу удалось наблюдать спектр некоторых туманностей и подтвердить уже неопровержимым образом предположение о существовании двух типов туманностей — звездных, состоящих из куч звезд, которые при достаточной оптической силе инструмента могут быть разложены на звезды, и газообразных, действительных туманностей, относительно которых можно думать, что они находятся в фазе образования отдельных звезд путем постепенного сгущения их вещества. С середины 60-х годов изучение поверхности Солнца посредством спектроскопа во время затмений и вне их вошло в состав непрерывных наблюдений, производящихся в настоящее время во многих обсерваториях. Геггинс, Локьер в Англии, Жансен во Франции, Фогель в Германии, Таккини в Италии, Гассельберг в России и др. дали обширные исследования, уяснившие строение верхних слоев солнечной атмосферы (см. Солнце). В то же время с 1868 года по мысли Геггинса спектроскоп был применен и к исследованию собственных движений звезд по направлению луча зрения посредством измерения перемещений линий их спектров измерения, которые в настоящее время также производятся систематически в Гринвичской обсерватории. Принцип Допплера, лежащий в основании этих измерений, был уже несколько раз проверяем экспериментально измерениями перемещений солнечного спектра и послужил Локьеру в его измерениях перемещений различных линий спектра Солнца к установлению его гипотезы о сложности химических элементов. Спектры комет, падающих звезд, метеоритов, исследованные разными астрономами, а в последнее время в особенности Локьером, дали уже много весьма важных фактов в руки астроному и в значительной степени послужили к уяснению происхождения и развития звезд и солнечной системы. А. шагает, именно в настоящее время, большими шагами вперед, и следует думать, что в ближайшем будущем раскрытые ею факты послужат к установлению более полной космогонической теории, чем та, которая передана нам предыдущими поколениями.
Литература: Кайзер, "Spectralanalyse" (1884); Локьер, "Chemistry of the sun" (1887).
II
(дополнение к статье)
За последние 20 лет, особенно со времени применения фотографии громадное развитие получили работы по изучению спектров светил. Этим задачам посвящена всецело деятельность весьма многих обсерваторий (напр. потсдамской, йеркской, линской и т. д.), наиболее выдающиеся современные астрономы занимаются А. Успехи ее невозможно изложить в краткой заметке, так как А. по существу представляет собой еще непрерывно увеличивающееся накопление наблюдений и фактов, которые не укладываются в рамки никакой теории. Основной причиной тому служит несоизмеримость явлений, наблюдаемых на Солнце, звездах, туманностях, с теми условиями, в которых находится материя в земных лабораториях. Примитивные теории и гипотезы, построенные до сих пор для объяснения того или другого отдельного явления, почти не заслуживают доверия. Таковы, напр., гипотеза для объяснения перемен яркости звезд существованием затмевающих спутников, различные попытки "механически" объяснить явления новых звезд (см. статью Переменные звезды), таковы объяснения смещения спектральных линий исключительно на основании принципа Допплера (см. Спектральный анализ), таковы объяснения различных особенностей жизни Солнца (см. Солнце). Совершенно иной характер имеют начатое систематическое изучение спектров при различных условиях, в которые поставлено вещество, изучение систем спектральных линий элементов, закономерности в их распределении и напряженности.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2025

Top.Mail.Ru
Top.Mail.Ru