Толковый словарь Ушакова:
НЕЙТРО́Н, нейтрона, ·муж. (от ·лат. neutrum, ·букв. ни то, ни другое) (физ. неол.). Входящая в ядро атома материальная частица, лишенная электрического заряда, электрически нейтральная.
Большой энциклопедический словарь:
НЕЙТРОН (англ. neutron, от лат. neuter — ни тот, ни другой) (n) — нейтральная элементарная частица со спином 1/2 и массой, превышающей массу протона на 2,5 электронных масс; относится к барионам. В свободном состоянии нейтрон нестабилен и имеет время жизни ок. 16 мин. Вместе с протонами нейтрон образуют атомные ядра; в ядрах нейтрон стабилен.
Большая советская энциклопедия:
Нейтрон
(англ. neutron, от лат. neuter — ни тот, ни другой; символ n)
нейтральная (не обладающая электрическим зарядом) элементарная частица со спином 1/2 (в единицах постоянной Планка ) и массой, незначительно превышающей массу протона. Из протонов и Н. построены все ядра атомные (См. Ядро атомное). Магнитный момент Н. равен примерно двум ядерным Магнетонам и отрицателен, т. е. направлен противоположно механическому, спиновому, моменту количества движения. Н. относятся к классу сильно взаимодействующих частиц (адронов) и входят в группу барионов, т. е. обладают особой внутренней характеристикой — барионным зарядом (См. Барионный заряд), равным, как и у протона (р), + 1. Н. были открыты в 1932 английским физиком Дж. Чедвиком, который установил, что обнаруженное немецкими физиками В. Боте и Г. Бекером проникающее излучение, возникающее при бомбардировке атомных ядер (в частности, бериллия) -частицами, состоит из незаряженных частиц с массой, близкой к массе протона.
Н. устойчивы только в составе стабильных атомных ядер. Свободный Н. — нестабильная частица, распадающаяся на протон, электрон (е-) и электронное антинейтрино :
среднее время жизни Н. — 16 мин. В веществе свободные Н. существуют ещё меньше (в плотных веществах единицы — сотни мксек) вследствие их сильного поглощения ядрами. Поэтому свободные Н. возникают в природе или получаются в лаборатории только в результате ядерных реакций (см. Нейтронные источники). В свою очередь, свободный Н. способен взаимодействовать с атомными ядрами, вплоть до самых тяжёлых; исчезая, Н. вызывает ту или иную ядерную реакцию, из которых особое значение имеет деление тяжёлых ядер, а также радиационный захват Н., приводящий в ряде случаев к образованию радиоактивных изотопов. Большая эффективность Н. в осуществлении ядерных реакций, своеобразие взаимодействия с веществом совсем медленных Н. (резонансные эффекты, дифракционное рассеяние в кристаллах и т.п.) делают Н. исключительно важным орудием исследования в ядерной физике и физике твёрдого тела. В практических приложениях Н. играют ключевую роль в ядерной энергетике (См. Ядерная энергетика) производстве трансурановых элементов и радиоактивных изотопов (искусственная радиоактивность), а также широко используются в химическом анализе (Активационный анализ) и в геологической разведке (Нейтронный каротаж).
В зависимости от энергии Н. принята их условная классификация: ультрахолодные Н. (до 10-7 эв), очень холодные (10-7—10-4 эв), холодные (10-4—510-3 эв), тепловые (510-3—0,5 эв), резонансные (0,5—104 эв), промежуточные (104—105 эв), быстрые (105—108 эв), высокоэнергичные (108—1010 эв) и релятивистские ( 1010 эв); все Н. с энергией до 105 эв объединяют общим названием Медленные нейтроны.
О методах регистрации Н. см. Нейтронные детекторы.
Основные характеристики нейтронов
Масса. Наиболее точно определяемой величиной является разность масс Н. и протона: mn — mр = (1,29344 ± 0,00007) Мэв, измеренная по энергетическому балансу различных ядерных реакций. Из сопоставления этой величины с массой протона получается (в энергетических единицах)
mn = (939,5527 ± 0,0052) Мэв;
это соответствует mn — 1,6·10-24 г, или mn — 1840 mе, где mе — масса электрона.
Спин и статистика. Значение 1/2 для спина Н. подтверждается большой совокупностью фактов. Непосредственно спин был измерен в опытах по расщеплению пучка очень медленных Н. в неоднородном магнитном поле. В общем случае пучок должен расщепиться на 2J + 1 отдельных пучков, где J — спин Н. В опыте наблюдалось расщепление на 2 пучка, откуда следует, что J = 1/2. Как частица с полуцелым спином, Н. подчиняется Ферми — Дирака статистике (См. Ферми — Дирака статистика) (является фермионом); независимо это было установлено на основе экспериментальных данных по строению атомных ядер (см. Ядерные оболочки).
Электрический заряд нейтрона Q = 0. Прямые измерения Q по отклонению пучка Н. в сильном электрическом поле показывают, что, по крайней мере, Q < 10-17e, где е — элементарный электрический заряд, а косвенные измерения (по электрической нейтральности макроскопических объёмов газа) дают оценку Q < 2·10-22 е.
Другие квантовые числа нейтрона. По своим свойствам Н. очень близок протону: n и р имеют почти равные массы, один и тот же спин, способны взаимно превращаться друг в друга, например в процессах Бета-распада; они одинаковым образом проявляют себя в процессах, вызванных сильным взаимодействие (См. Сильные взаимодействия), в частности Ядерные силы, действующие между парами р—р, n—p и n—n, одинаковы (если частицы находятся соответственно в одинаковых состояниях). Такое глубокое сходство позволяет рассматривать Н. и протон как одну частицу — нуклон, которая может находиться в двух разных состояниях, отличающихся электрическим зарядом Q. Нуклон в состоянии с Q = + 1 есть протон, с Q = 0 — Н. Соответственно, нуклону приписывается (по аналогии с обычным спином) некоторая внутренняя характеристика — изотонический спин I, равный 1/2, «проекция» которого может принимать (согласно общим правилам квантовой механики) 2I + 1 = 2 значения: + 1/2 и —1/2. Т. о., n и р образуют изотопический дублет (см. Изотопическая инвариантность): нуклон в состоянии с проекцией изотопического спина на ось квантования + 1/2 является протоном, а с проекцией —1/2 — Н. Как компоненты изотопического дублета, Н. и протон, согласно современной систематике элементарных частиц, имеют одинаковые квантовые числа: барионный заряд В =+ 1, Лептонный заряд L = 0, Странность S = 0 и положительную внутреннюю Чётность. Изотопический дублет нуклонов входит в состав более широкой группы «похожих» частиц — так называемый октет барионов с J = 1/2, В = 1 и положительной внутренней чётностью; помимо n и р в эту группу входят -, ±-, 0-, --, 0- Гипероны, отличающиеся от n и р странностью (см. Элементарные частицы).
Магнитный дипольный момент нейтрона, определённый из экспериментов по ядерному магнитному резонансу, равен:
n = — (1,91315 ± 0,00007) я,
где я=5,0510-24 эрг/гс — ядерный магнетон. Частица со спином 1/2, описываемая Дирака уравнением, должна обладать магнитным моментом, равным одному магнетону, если она заряжена, и нулевым, если не заряжена. Наличие магнитного момента у Н., так же как аномальная величина магнитного момента протона (р = 2,79я), указывает на то, что эти частицы имеют сложную внутреннюю структуру, т. е. внутри них существуют электрические токи, создающие дополнительный «аномальный» магнитный момент протона 1,79я и приблизительно равный ему по величине и противоположный по знаку магнитный момент Н. (—1,9я) (см. ниже).
Электрический дипольный момент. С теоретической точки зрения, электрический дипольный момент d любой элементарной частицы должен быть равен нулю, если взаимодействия элементарных частиц инвариантны относительно обращения времени (См. Обращение времени) (Т-инвариантность). Поиски электрического дипольного момента у элементарных частиц являются одной из проверок этого фундаментального положения теории, и из всех элементарных частиц, Н. — наиболее удобная частица для таких поисков. Опыты по методу магнитного резонанса на пучке холодных Н. показали, что dn < 10-23 см·e. Это означает, что сильное, электромагнитное и слабое взаимодействия с большой точностью Т-инвариантны.
Взаимодействия нейтронов
Н. участвуют во всех известных взаимодействиях элементарных частиц — сильном, электромагнитном, слабом и гравитационном.
Сильное взаимодействие нейтронов. Н. и протон участвуют в сильных взаимодействиях как компоненты единого изотопического дублета нуклонов. Изотопическая инвариантность сильных взаимодействий приводит к определённой связи между характеристиками различных процессов с участием Н. и протона, например эффективные сечения рассеяния +-мезона на протоне и --мезона на Н. равны, так как системы +р и -n имеют одинаковый изотопический спин I = 3/2 и отличаются лишь значениями проекции изотопического спина I3 (I3 = + 3/2 в первом и I3 = — 3/2 во втором случаях), одинаковы сечения рассеяния К+ на протоне и К°на Н, и т.п. Справедливость такого рода соотношений экспериментально проверена в большом числе опытов на ускорителях высокой энергии. [Ввиду отсутствия мишеней, состоящих из Н., данные о взаимодействии с Н. различных нестабильных частиц извлекаются главным образом из экспериментов по рассеянию этих частиц на дейтроне (d) — простейшем ядре, содержащем Н.]
При низких энергиях реальные взаимодействия Н. и протонов с заряженными частицами и атомными ядрами сильно различаются из-за наличия у протона электрического заряда, обусловливающего существование дальнодействующих кулоновских сил между протоном и др. заряженными частицами на таких расстояниях, на которых короткодействующие ядерные силы практически отсутствуют. Если энергия столкновения протона с протоном или атомным ядром ниже высоты кулоновского барьера (которая для тяжелых ядер порядка 15 Мэв), рассеяние протона происходит в основном за счёт сил электростатического отталкивания, не позволяющих частицам сблизиться до расстояний порядка радиуса действия ядерных сил. Отсутствие у Н. электрического заряда позволяет ему проникать через электронные оболочки атомов и свободно приближаться к атомным ядрам. Именно это обусловливает уникальную способность Н. сравнительно малых энергий вызывать различные ядерные реакции, в том числе реакцию деления тяжёлых ядер. О методах и результатах исследований взаимодействия Н. с ядрами см. в статьях Медленные нейтроны, Нейтронная спектроскопия, Ядра атомного деление, Рассеяние медленных Н. на протонах при энергиях вплоть до 15 Мэв сферически симметрично в системе центра инерции. Это указывает на то, что рассеяние определяется взаимодействием n — р в состоянии относительного движения с орбитальным моментом количества движения l = 0 (так называемая S-волна). Рассеяние в S-cocтоянии является специфически квантовомеханическим явлением, не имеющим аналога в классической механике. Оно превалирует над рассеянием в др. состояниях, когда де-бройлевская длина волны Н.
порядка или больше радиуса действия ядерных сил ( — постоянная Планка, v — скорость Н.). Поскольку при энергии 10 Мэв длина волны Н.
эта особенность рассеяния Н. на протонах при таких энергиях непосредственно даёт сведения о порядке величины радиуса действия ядерных сил. Теоретическое рассмотрение показывает, что рассеяние в S-cocтоянии слабо зависит от детальной формы потенциала взаимодействия и с хорошей точностью описывается двумя параметрами: эффективным радиусом потенциала r и так называемой длиной рассеяния а. Фактически для описания рассеяния n — р число параметров вдвое больше, так как система np может находиться в двух состояниях, обладающих различными значениями полного спина: J = 1 (триплетное состояние) и J = 0 (синглетное состояние). Опыт показывает, что длины рассеяния Н. протоном и эффективные радиусы взаимодействия в синглетном и триплетном состояниях различны, т. е. ядерные силы зависят от суммарного спина частиц, Из экспериментов следует также, что связанное состояние системы np (ядро дейтерия) может существовать лишь при суммарном спине 1, в то время как в синглетном состоянии величина ядерных сил недостаточна для образования связанного состояния Н. — протон. Длина ядерного рассеяния в синглетном состоянии, определённая из опытов по рассеянию протонов на протонах (два протона в S-cocтоянии, согласно Паули принципу, могут находиться только в состоянии с нулевым суммарным спином), равна длине рассеяния n—p в синглетном состоянии. Это согласуется с изотопической инвариантностью сильных взаимодействий. Отсутствие связанной системы пр в синглетном состоянии и изотопическая инвариантность ядерных сил приводят к выводу, что не может существовать связанной системы двух Н. — так называемый бинейтрон (аналогично протонам, два Н. в S-cocтоянии должны иметь суммарный спин, равный нулю). Прямых опытов по рассеянию n—n не проводилось ввиду отсутствия нейтронных мишеней, однако, косвенные данные (свойства ядер) и более непосредственные — изучение реакций 3H + 3H 4He + 2n, - + d 2n + — согласуются с гипотезой изотопической инвариантности ядерных сил и отсутствием бинейтрона. [Если бы существовал бинейтрон, то в этих реакциях наблюдались бы при вполне определенных значениях энергии пики в энергетических распределениях соответственно -частиц (ядер 4He) и -квантов.] Хотя ядерное взаимодействие в синглетном состоянии недостаточно велико, чтобы образовать бинейтрон, это не исключает возможности образования связанной системы, состоящей из большого числа одних только Н. — нейтронных ядер. Этот вопрос требует дальнейшего теоретического и экспериментального изучения. Попытки обнаружить на опыте ядра из трёх-четырёх Н., а также ядра 4H, 5H, 6H не дали пока положительного результата, Несмотря на отсутствие последовательной теории сильных взаимодействий, на основе ряда существующих представлении можно качественно понять некоторые закономерности сильных взаимодействий и структуры Н. Согласно этим представлениям, сильное взаимодействие между Н. и др. адронами (например, протоном) осуществляется путём обмена виртуальными адронами (см. Виртуальные частицы) — -мезонами, -мезонами и др. Такая картина взаимодействия объясняет короткодействующий характер ядерных сил, радиус которых определяется комптоновской длиной волны (См. Комптоновская длина волны) самого лёгкого адрона — -мезона (равной 1,410-13 см). Вместе с тем она указывает на возможность виртуального превращения Н. в др. адроны, например процесс испускания и поглощения -мезона: n p + - n. Известная из опыта интенсивность сильных взаимодействий такова, что Н. подавляющее время должен проводить в подобного рода «диссоциированных» состояниях, находясь как бы в «облаке» виртуальных -мезонов и др. адронов. Это приводит к пространственному распределению электрического заряда и магнитного момента внутри Н., физические размеры которого определяются размерами «облака» виртуальных частиц (см. также Формфактор). В частности, оказывается возможным качественно интерпретировать отмеченное выше приблизительное равенство по абсолютной величине аномальных магнитных моментов Н. и протона, если считать, что магнитный момент Н. создаётся орбитальным движением заряженных --мезонов, испускаемых виртуально в процессе n p + - n, а аномальный магнитный момент протона — орбитальным движением виртуального облака +-мезонов, создаваемого процессом р n + + р.
Электромагнитные взаимодействия нейтрона. Электромагнитные свойства Н. определяются наличием у него магнитного момента, а также существующим внутри Н. распределением положительного и отрицательного зарядов и токов. Все эти характеристики, как следует из предыдущего, связаны с участием Н. в сильном взаимодействии, обусловливающем его структуру. Магнитный момент Н. определяет поведение Н. во внешних электромагнитных полях: расщепление пучка Н. в неоднородном магнитном поле, прецессию спина Н. Внутренняя электромагнитная структура Н. проявляется при рассеянии электронов высокой энергии на Н. и в процессах рождения мезонов на Н. -квантами (фоторождение мезонов). Электромагнитные взаимодействия Н. с электронными оболочками атомов и атомными ядрами приводят к ряду явлений, имеющих важное значение для исследования строения вещества. Взаимодействие магнитного момента Н. с магнитными моментами электронных оболочек атомов проявляется существенно для Н., длина волны которых порядка или больше атомных размеров (энергия Е < 10 эв), и широко используется для исследования магнитной структуры и элементарных возбуждений (спиновых волн (См. Спиновые волны)) магнитоупорядоченных кристаллов (см. Нейтронография). Интерференция с ядерным рассеянием позволяет получать пучки поляризованных медленных Н. (см. Поляризованные нейтроны).
Взаимодействие магнитного момента Н. с электрическим полем ядра вызывает специфическое рассеяние Н., указанное впервые американским физиком Ю. Швингером и потому называемое «швингеровским». Полное сечение этого рассеяния невелико, однако при малых углах (~ 3°) оно становится сравнимым с сечением ядерного рассеяния; Н., рассеянные на такие углы, в сильной степени поляризованы.
Взаимодействие Н. — электрон (n—e), не связанное с собственным или орбитальным моментом электрона, сводится в основном к взаимодействию магнитного момента Н. с электрическим полем электрона. Другой, по-видимому меньший, вклад в (n—e)-взаимодействие может быть обусловлен распределением электрических зарядов и токов внутри Н. Хотя (n—e)-взаимодействие очень мало, его удалось наблюдать в нескольких экспериментах.
Слабое взаимодействие нейтрона проявляется в таких процессах, как распад Н.:
захват электронного антинейтрино протоном:
и мюонного нейтрино () нейтроном: + n р + -, ядерный захват мюонов: - + р n + , распады странных частиц (См. Странные частицы), например ° + n, и т.д.
Гравитационное взаимодействие нейтрона. Н. — единственная из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие — искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных Н. Измеренное гравитационное ускорение Н. в пределах точности эксперимента совпадает с гравитационным ускорением макроскопических тел.
Нейтроны во Вселенной и околоземном пространстве
Вопрос о количестве Н. во Вселенной на ранних стадиях её расширения играет важную роль в космологии. Согласно модели горячей Вселенной (см. Космология), значительная часть первоначально существовавших свободных Н. при расширении успевает распасться. Часть Н., которая оказывается захваченной протонами, должна в конечном счёте привести приблизительно к 30%-ному содержанию ядер Не и 70%-ному — протонов. Экспериментальное определение процентного состава He во Вселенной — одна из критических проверок модели горячей Вселенной.
Эволюция звёзд в ряде случаев приводит к образованию нейтронных звёзд (См. Нейтронные звёзды), к числу которых относятся, в частности, так называемые Пульсары.
В первичной компоненте космических лучей (См. Космические лучи) Н. в силу своей нестабильности отсутствуют. Однако взаимодействия частиц космических лучей с ядрами атомов земной атмосферы приводят к генерации Н. в атмосфере. Реакция 14N (n, р)14С, вызываемая этими Н., — основной источник радиоактивного изотопа углерода 14C в атмосфере, откуда он поступает в живые организмы; на определении содержания 14C в органических остатках основан радиоуглеродный метод геохронологии (См. Геохронология). Распад медленных Н., диффундирующих из атмосферы в околоземное космическое пространство, является одним из основных источников электронов, заполняющих внутреннюю область радиационного пояса Земли (См. Радиационные пояса Земли).
Лит.: Власов Н. А., Нейтроны, 2 изд., М., 1971; Гуревич И. И., Тарасов Л. В., Физика нейтронов низких энергий, М., 1965.
Ф. Л. Шапиро, В. И. Лущиков.
Большой словарь иностранных слов:
Нейтрона, м. [от латин. neutrum, букв. ни то, ни другое] (физ. нов.). Входящая в ядро атома материальная частица, лишенная электрического заряда, электрически нейтральная.
Толковый словарь Кузнецова:
нейтрон
НЕЙТРОН -а; м. [от лат. neuter — ни тот, ни другой] Физ. Нейтральная элементарная частица, входящая в состав ядер атомов.
Нейтронный, -ая, -ое. Физ. Н-ое облучение.
Малый академический словарь:
нейтрон
-а, м. физ.
Нейтральная частица, входящая в состав ядер атомов.
[От лат. neutrum — ни то, ни другое]
Орфографический словарь Лопатина:
орф.
нейтрон, -а
Толковый словарь Ожегова:
НЕЙТРОН, а, м. (спец.). Электрически нейтральная элементарная частица с массой, почти равной массе протона.
| прил. нейтронный, ая, ое.
Физический энциклопедический словарь:
(англ. neutron, от лат. neuter — ни тот, ни другой) (n), электрически нейтральная элем. ч-ца со спином 1/2 и массой, незначительно превышающей массу протона; относится к классу адронов и входит в группу барионов. Из протонов и Н. построены все ядра атомные. Н. открыты в 1932 англ. физиком Дж. Чедвиком, установившим, что обнаруженное нем. физиками В. Боте и Г. Бекером проникающее излучение, к-рое возникает при бомбардировке ат. ядер a-частицами, состоит из незаряж. ч-ц с массой, близкой к протонной.
Н. устойчивы только в составе стабильных ат. ядер. Свободный Н.— нестабильная ч-ца, распадающаяся по схеме:n®p+e-+v=c (бета-распад Н.); ср. время жизни Н. t=15,3 мин. В в-ве свободные Н. существуют ещё меньше (в плотных в-вах — единицы — сотни мкс) вследствие их сильного поглощения ядрами. Поэтому свободные Н. возникают в природе или получаются в лаборатории только в яд. реакциях. Свободные Н., взаимодействуя с ат. ядрами, вызывают разл. ядерные реакции. Большая эффективность Н. в осуществлении яд. реакций, своеобразие вз-ствия с в-вом медленных Н. (резонансные эффекты, дифракц. рассеяние в кристаллах и т. п.) делают Н. исключительно важным орудием исследования в яд. физике и физике тв. тела (см. НЕЙТРОНОГРАФИЯ). В практич. приложениях Н. играют ключевую роль в яд. энергетике, в производстве трансурановых элементов и радиоакт. изотопов (искусств. радиоактивность), а также используются в хим. анализе (активац. анализ) и в геол. разведке (нейтронный каротаж).
Классификацию Н. по энергиям (быстрые, медленные, тепловые и т. д.) см. в ст. (см. НЕЙТРОННАЯ ФИЗИКА).
Основные характеристики нейтронов.
Масса. Наиболее точно определена разность масс Н. и протона: mn--mp=1,29344(7) МэВ, измеренная по энергетич. балансу разл. яд. реакций. Отсюда (и известной mp) mn= 939,5731(27) МэВ или mn»1,675Х10-24 г»1840me (me — масса эл-на).
Спин и статистика. Спин Н. J был измерен по расщеплению пучка очень медленных Н. в неоднородном магн. поле. Согласно квант. механике, пучок должен расщепляться на 2J+1 отд. пучков. Наблюдалось расщепление на два пучка, т. е. для Н. J=1/2 и Н. подчиняется Ферми — Дирака статистике (независимо это было установлено на основе эксперим. данных по строению ат. ядер).
Электрический заряд Н. Q=0. Прямые измерения Q по отклонению пучка Н. в сильном электрич. поле дают Q<10-20e, а косвенные (по электрич. нейтральности макроскопич. объёмов газа) — Q<2•10-22 е (где е — величина заряда эл-на).
Д р у г и е к в а н т о в ы е ч и с л а. По своим св-вам Н. очень близок протону: n и p имеют почти равные массы, один и тот же спин, способны взаимно превращаться друг в друга (напр., в процессах b-распада), одинаковым образом проявляют себя в сильном вз-ствии. Такое глубокое сходство позволяет рассматривать Н. и протон как одну ч-цу — нуклон, к-рая может находиться в двух разных зарядовых состояниях. Нуклон в состоянии с Q=+1 есть протон, с Q=0 есть Н. Соответственно, нуклону приписывается (по аналогии с обычным спином) нек-рая внутр. хар-ка — изотопический спин I, равный 1/2, «проекция» к-рого может принимать 2I+1=2 значения: +1/2 и -1/2. Т. о., n и p образуют изотопич. дублет (см. ИЗОТОПИЧЕСКАЯ ИНВАРИАНТНОСТЬ). Как компоненты изотопич. дублета, Н. и протон имеют одинаковые квант. числа: барионный заряд B=+1, лептонный заряд L=0, странность S=0 и положит. внутр. чётность. Изотопич. дублет нуклонов входит в состав более широкой группы «похожих» ч-ц — октет барионов. Все квант. хар-ки Н. объясняются кварковой моделью адронов, согласно к-рой Н. состоит из двух d-кварков и одного u-кварка (см. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ).
Магнитный дипольный момент Н., найденный из экспериментов по методу ЯМР, равен: mп=-1,91315(7)mя, где mя — яд. магнетон. Ч-ца с J=1/2, описываемая Дирака уравнением, должна обладать магн. моментом, равным магнетону, если она заряжена, и нулевым, если не заряжена. Наличие магн. момента у Н., так же как аномальная величина магн. момента протона (mр»2,79mя), указывает на то, что нуклоны обладают сложной внутр. структурой, т. е. внутри них существуют электрич. токи, создающие дополнит. аномальный магн. момент протона 1,79 mя и прибл. равный ему по величине и противоположный по знаку магн. момент Н. (-1,9mя). С другой стороны, согласно кварковой модели адронов, mn/mр»2/3, что также согласуется с наблюдаемыми значениями mп и mр.
Электрический дипольный момент. С теор. точки зрения электрич. дипольный момент d любой элем. ч-цы должен быть равен нулю, если вз-ствия ч-ц инвариантны относительно обращения времени (T-инвариантны). Одна из проверок этого фундам. положения теории — поиски d у элем. ч-ц, и Н.— наиб. удобная ч-ца для таких поисков. Опыты показали, что dn<2•10-25 см•е. Это означает, что сильное, эл.-магн. и слабое вз-ствия с большой точностью T-инвариантны.
Взаимодействие нейтронов.
Н. участвуют во всех известных фундам. вз-ствиях элем. ч-ц.
С и л ь н о е в з а и м о д е й с т в и е. Изотопич. инвариантность сильного вз-ствия приводит к определ. связи между хар-ками разл. процессов с участием Н. и протона, напр. эфф. сечения рассеяния p+-мезона на протоне и p--мезона на Н. равны, т. к. системы p+p и p-n имеют одинаковый изотопич. спин I=3/2 и отличаются лишь проекциями изотопич. спина (I3=+3/2 в первом и I3=-3/2 во втором случае), одинаковы сечения рассеяния К+-мезона на протоне и К°-мезона на Н. и т. п. Справедливость такого рода соотношений экспериментально проверена в большом числе опытов. (Данные о вз-ствии разл. нестабильных ч-ц с Н. получают гл. обр. из экспериментов по рассеянию Н. на дейтроне.) Однако при низких энергиях вз-ствия n и p с заряж. ч-цами и ат. ядрами сильно различаются из-за наличия у протона электрич. заряда, обусловливающего существование дальнодействующих кулоновских сил между ним и др. заряж. ч-цами на таких расстояниях, на к-рых короткодействующие яд. силы практически отсутствуют. Отсутствие у Н. электрич. заряда позволяет ему проникать через электронные оболочки атомов и свободно приближаться к ядрам. Именно этим объясняется уникальная способность Н. сравнительно малых энергий вызывать разл. яд. реакции, в т. ч. деление тяжёлых ядер (см. ДЕЛЕНИЕ АТОМНОГО ЯДРА).
Рассеяние медленных Н. на протонах при энергиях до 15 МэВ сферически симметрично в системе центра инерции. Это указывает на то, что рассеяние определяется вз-ствием np в состоянии относит. движения с орбит. моментом l=0 (т. н. S-волна). S-рассеяние превалирует над рассеянием в др. состояниях, когда длина волны де Бройля Н. ?? радиуса действия яд. сил. Т. к. при энергии 10 МэВ для Н. ?»2•10-13 см, эта особенность рассеяния Н. на протонах при таких энергиях даёт сведения о порядке величины радиуса действия яд. сил. Из теории рассеяния микрочастиц следует, что рассеяние в S-состоянии слабо зависит от детальной формы потенциала вз-ствия и с хорошей точностью описывается двумя параметрами: эфф. радиусом r потенциала и длиной рассеяния а. Для описания np-рассеяния число параметров вдвое больше, т. к. система может находиться в двух состояниях с разными значениями полного спина: 1 (триплетное состояние) и 0 (синглетное состояние). Опыт показывает, что длины рассеяния Н. протоном и эфф. радиусы вз-ствия в синглетном и триплетном состояниях различны, т. е. яд. силы зависят от суммарного спина ч-ц. В частности, связ. состояние системы np — ядро дейтерия может существовать лишь при спине 1. Длина рассеяния в синглетном состоянии, определённая из опытов по pp-рассеянию (два протона в S-состоянии, согласно Паули принципу, могут находиться только в состоянии с нулевым суммарным спином), равна длине np-рассеяния в синглетном состоянии. Это согласуется с изотопич. инвариантностью сильного вз-ствия. Отсутствие связ. системы np в синглетном состоянии и изотопич. инвариантность яд. сил приводят к выводу, что не может существовать связ. системы двух Н-— т. н. бинейтрон. Прямых опытов по nn-рассеянию не проводилось из-за отсутствия нейтронных мишеней, однако косв. данные (св-ва ядер) и более непосредственные — изучение реакций 3Н+3Н®4Не+2n, p-+d®2n+g согласуются с гипотезой изотопич. инвариантности яд. сил и отсутствием бинейтрона. (Если бы бинейтрон существовал, то в этих реакциях наблюдались бы при вполне определ. энергиях пики в энергетич. распределениях соотв. a-частиц и g-квантов.) Хотя яд. вз-ствие в синглетном состоянии недостаточно велико, чтобы образовать бинейтрон, это не исключает возможности образования связ. системы из большого числа одних только Н.— нейтронных ядер (ядра из трёх-четырёх Н. не обнаружены).
Э л е к т р о м а г н и т н о е в з а и м о д е й с т в и е. Эл.-магн. св-ва Н. определяются наличием у него магн. момента, а также существующим внутри Н. распределением положит. и отрицат. зарядов и токов. Магн. момент Н. определяет поведение Н. во внеш. эл.-магн. полях: расщепление пучка Н. в неоднородном магн. поле, прецессию спина Н. Внутр. эл.-магн. структура Н. (см. ФОРМФАКТОР) проявляется при рассеянии эл-нов высокой энергии на Н. и в процессах рождения мезонов на Н. g-квантами. Вз-ствие магн. момента Н. с магн. моментами электронных оболочек атомов существенно проявляется для Н., длина волны де Бройля к-рых ??ат. размеров (энергия ?<10 эВ), и широко используется для исследования магн. структуры и элем. возбуждений (спиновых волн) магнитоупорядоч. кристаллов (см. НЕЙТРОНОГРАФИЯ). Интерференция магн. рассеяния с ядерным позволяет получать пучки поляризованных медленных Н. Вз-ствие магн. момента Н. с электрич. полем ядра вызывает специфич. швингеровское рассеяние Н. (указано впервые амер. физиком Ю. Швингером). Полное сечение этого рассеяния невелико, однако при малых углах (=3°) оно становится сравнимым с сечением яд. рассеяния; Н., рассеянные на такие углы, в сильной степени поляризованы. Вз-ствие Н. с эл-ном, не связанное с собств. или орбит. моментом эл-на, сводится в осн. к вз-ствию магн. момента Н. с электрнч. полем эл-на. Хотя это вз-ствие очень мало, его удалось наблюдать в иеск. экспериментах.
Слабое взаимодействие (I. проявляется в таких процессах, как распад Н.: n®p+e-+v=e, захват электронного антинейтрино протоном: v=e+р®n+е+ и мюонного нейтрино нейтроном: vm+n®p+m-, яд. захват мюонов: m-+р®n+vm, распады странных частиц, напр. L®p°+n, а также в яд. реакциях, вызываемых II. и идущих с нарушением пространств. чётности.
Г р а в и т а ц и о н н о е в з а и м о д е й с т в и е. Н.— единственная из имеющих массу покоя элем. ч-ц, для к-рой непосредственно наблюдалось гравитац. вз-ствие — искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных Н. Измеренное гравитац. ускорение Н. в пределах точности эксперимента совпадает с гравитац. ускорением макроскопич. тел.
Нейтроны во Вселенной и околоземном пространстве.
Вопрос о кол-ве Н. во Вселенной на ранних стадиях её расширения играет важную роль в космологии. Согласно модели горячей Вселенной, значит. часть первоначально существовавших свободных Н. при расширении успевает распасться. Часть Н., к-рая оказывается захваченной протонами, должна в конечном счёте привести прибл. к 30%-ному содержанию ядер Не и 70%-ному — протонов. Эксперим. определение процентного содержания Не во Вселенной — одна из критич. проверок модели горячей Вселенной. Эволюция звёзд в ряде случаев приводит к образованию нейтронных звёзд (к числу к-рых относятся, в частности, пульсары). В первичной компоненте косм. лучей Н. из-за своей нестабильности отсутствуют. Однако вз-ствие ч-ц косм. лучей с ядрами атомов земной атмосферы приводит к генерации Н. в атмосфере. Реакция 14N (n, p) 14С, вызываемая этими Н.,— осн. источник радиоакт. изотопа углерода 14С в атмосфере, откуда он поступает в живые организмы; на определении содержания 14С в органич. остатках основан радиоуглеродный метод геохронологии. Распад медленных Н., диффундирующих из атмосферы в околоземное косм. пр-во, явл. одним из источников эл-нов, заполняющих внутр. область радиационных поясов Земли.
Научно-технический словарь:
НЕЙТРОН (обозначение n), незаряженная ЭЛЕМЕНТАРНАЯ ЧАСТИЦА в ядрах всех химических элементов, кроме самого легкого изотопа ВОДОРОДА. Открыт Джеймсом ЧЕДВИКОМ. Вне ядра атома нейтрон нестабилен, разрушается с периодом полураспада 11,6 минут, превращаясь в протон, электрон или антинейтрино. Его нейтральность позволяет проникать и впитываться в ядра, тем самым вызывая ядерное превращение и расщепление ядра. Является БАРИОНОМ со спином 1/2 и массой, немного большей, чем масса протона.
Словарь синонимов русского языка:
сущ.
нуклон
частица
Грамматический словарь Зализняка:
Нейтрон, нейтроны, нейтрона, нейтронов, нейтрону, нейтронам, нейтрон, нейтроны, нейтроном, нейтронами, нейтроне, нейтронах
© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2025